Sharpening Angles for Bench & Block Planes

Sharpening Basics

Since sharpening is such an expansive topic in and of itself, I will leave the specific how-to details for other posts.  What you need to know in the context of fine tuning, however, is that any plane, new or old, requires initial sharpening and honing.

At a minimum, new plane irons need to have their un-beveled side flattened and polished to at least 4000 grit and preferably 8000 grit.  You don’t need to fuss with the entire surface; just the first 1/8” to 1/4” along the cutting edge is all that matters.  You also need to put a final honing on the bevel edge itself.  It may look sharp, but it needs to be honed, again, ideally to 8000 grit.  The goal is to get your cutting edge to as close as possible to a zero degree radius.

Sharpening is too often the deal breaker that dissuades woodworkers from trying hand tools.  This in unfortunate, for it requires little monetary investment to get started, is not particularly difficult to learn, and can be accomplished rather quickly with surprisingly good results.  For detailed information on the how-to of sharpening, I recommend investing in one (or both) of the outstanding books on the subject by Ron Hock or Leonard Lee.   Chris Schwarz has also written a number of fantastic articles on sharpening plane irons.

Getting Down to Business

If all you want to know is what bevel angle to sharpen on your plane iron, make it 25º and call it a day.  But if you want to better understand the reasoning behind the geometry and some of the variations possible, read on.  In order to master your tools, it’s helpful to understand the principles behind the geometry at play.  So, first a few concepts and then we’ll tie them all together.

Frog Assembly

The frog is screwed to the body of bench planes

First things First – Before you can determine the optimal angle at which your plan iron should be sharpened, you first need to know the angle at which it sits in the plane.  Plane irons are held in place against the frog via a clamping device called the lever cap.  The frog is attached to the base, or sole, of the plane and provides an immovable seat for the iron.   The angle of the frog face is not adjustable, so it must be considered a constant.  On standard bench planes, the angle is usually 45º while on low angle planes it is typically a very shallow 12º.  This angle is traditionally referred to as the ‘pitch’ of the plane.

Pitch / Angle of Attack – Pitch, or what Ron Hock refers to as the Angle of Attack, is the angle at which the cutting edge engages the wood. [1]   As stated above, most bench planes have  a bed angle of 45 degrees.  This is referred to as ‘common pitch,’  and has traditionally been considered the optimal pitch for bench planes.  A slightly higher 50º pitch is called ‘York Pitch.’  This higher angle pitch is used in some bench planes for working harder woods and woods with difficult grains.  ‘Middle Pitch’ of 55º and ‘Half Pitch’  (also known as ‘Cabinet Pitch’) of 60º are frequently found in molding planes for soft and hardwood respectively. Angles of less than 45º are referred to as ‘Low Angle’ or ‘Extra Pitch,’ and are used in planes for softwood and for cutting end grain. [2]

Here’s a summary table of the different pitches and their intended use.

Pitch (Angle of Attack) Name Use
60º Half Pitch / Cabinet Pitch Molding planes for hardwood
55º Middle Pitch Molding planes for softwood
50º York Pitch Harder woods with difficult grain
45º Common Pitch Optimal Pitch for most planes
<45º Low Angle Softwood and End Grain

Bevel Up vs. Bevel Down – All planes fall into one of two categories – Bevel Down and Bevel Up.  Bevel down planes have irons that are situated with the bevel angle facing down, while the irons on bevel up planes are positioned with the bevel angle facing up.  Most bench planes are bevel down while most block planes are bevel up.  Specialty planes can go either way, depending on their intended purpose.  There are some advantages to the bevel up configuration, but we’ll cover that later.

Regardless of whether the plane is bevel up or bevel down, the angle of the frog face (upon which the iron sits) is an important determining factor in determining the desired bevel angle.  As stated above, the vast majority of bench planes have frogs with a 45º bed, meaning the cutting iron sits at a 45 degree angle from the work surface.  Since these bench planes are bevel down, changing the bevel angle doesn’t change the pitch, or angle of attack – that’s essentially fixed at 45 degrees.  Changing the bevel angle does, however, change the relief angle, or clearance behind the iron.

SB605 Type 6

Bevel Down Bench Plane

Bevel Down Planes – Since the irons on most bench planes are positioned bevel down, this is the most common configuration faced when sharpening.   Because the un-beveled side of the iron is positioned up (i.e., bevel side down), the angle of attack is the same regardless of the angle at which the bevel is sharpened.  That doesn’t mean the bevel angle is completely unimportant; durability, for example, is still a consideration.  The bevel angle is, however, less critical than it is on bevel up planes.  That said, there are still a few tricks you can employ to fine tune your angle of cut, but more on that later.

The standard primary bevel angle for bevel down bench planes is 25 degrees.  This offers a good balance of shearing action and durability while providing an adequate relief angle (behind the cut).

SB65.5 Type3

Bevel Up Block Plane

Bevel Up Planes – Block planes have the iron positioned bevel up, but they’re not the only planes with this configuration.  Low angle bench planes, including the Stanley no. 62 and the Sargent no. 514 were bevel up, as are several models made today by Veritas.  There is an advantage with bevel up irons in that the angle of the bevel can be changed to affect a change in the angle of cut.  This provides a measure of flexibility that bevel down planes don’t have, at least not to the same extent.

While there is more to consider in edge geometry than just the angle of cut (i.e., durability), you could reasonably sharpen the bevel on the iron of a low angle block plane iron to 33 degrees.  Given its 12º bed angle, you would end up with an angle of cut of 45 degrees (12º+33º=45º), the same as on a standard angle plane.  By contrast, to accomplish a low angle of cut using a standard angle plane, you’d have to sharpen the bevel at a very shallow 17 degrees (20º+17º=37º).  Durability of such a thin cutting edge would be problematic with most woods.

See “Beyond the Standard” below for information on adding secondary bevels (micro-bevels) and back-bevels.

Common Sharpening Angles

The table below shows the three most common bench and block plane types and the proper angles at which to sharpen the irons.

Common Plane Types Frog Angle Angle to Sharpen Angle of Cut
Bench Plane – Standard Angle 45º 25º to 30º 45º
Block Plane – Standard Angle 20º 25º 45º
Block Plane – Low Angle 12º 25º 37º


Beyond the Standard

Secondary/Micro-Bevels – The terms secondary bevel and micro-bevel refer to the same thing.  Secondary bevels are a very shallow bevel along the cutting edge of the primary bevel.  These angles, usually 1º to 3º, serve primarily as an aid in honing.  It takes considerably less time and effort to final hone a small secondary bevel that it does the entire primary bevel.  They also make honing touch ups a snap.  As long as the edge has not been damaged, it’s quick and easy work to re-establish a keen edge on the secondary bevel with a few strokes on a sharpening stone.

On a bevel down plane, adding a secondary bevel affects no change in the angle of cut.  The only thing it changes ever so slightly is the relief angle – the angle between the back side (bevel side) of the iron and the work surface. It also slightly reduces the total bevel angle on the iron itself, but should not be enough to affect durability of the edge.  On most planes the addition or subtraction of a couple of degrees of bevel angle is not going to make any difference.

Some people will tell you you can’t (or shouldn’t) put a secondary bevel on a bevel up iron.  That’s nonsense.  If you’re that concerned with the cutting angle, sharpen your primary angle a few degrees shallower so the secondary angle brings you back to 25º.  I’ve never experienced a problem with a secondary bevel on a bevel up iron, and it’s a sharpening technique I apply consistently.

Back Bevels – Back bevels can be added for a couple of reasons.  On a bevel down plane, (unlike the secondary bevel) adding a back bevel will affect the angle of cut.  This is something you can use to your advantage.  For example, with the frog fixed at a 45º angle, adding a 5º back bevel increases the angle of cut from 45º to 50º.  This technique can be used if you’re working with harder woods or wood with difficult grain.

Back bevels are also helpful if your plane’s iron has rust damage or pitting to its un-beveled side.  By putting a back bevel of 1º to 2º on the pitted back side, you effectively cut through the pitted surface creating a clean, undamaged edge.  You end up with a cutting angle of about 46º to 47º – not a critical difference for most woodworkers.  If you’re obsessive about your edge geometry and angle of cut, this might not be a satisfactory solution.  Although if that’s the case, you probably shouldn’t be futzing with a vintage plane in the first place, let alone salvaging a pitted plane iron.  But if you’re like me, having one or two extra irons set up for different purposes is a must, and finding good use for old irons suffering from age and neglect makes me feel good.  It’s just a matter of purposing them for the right job.  And again, increasing this angle of attack is actually advantageous when planning wood with difficult grain. [3]

Back bevels on bevel up irons won’t change the angle of cut, but they do change very slightly the relief angle and the bevel angle of the iron itself.  Again, a couple of degrees difference should not adversely effect the  durability of the edge.

Summary

Wrapping up, the vast majority of both bench and block planes can be sharpened with a 25º bevel angle.  However, with a little experimentation, you may find that making some adjustments to the geometry helps overcome challenges presented by both difficult wood and less than perfect plane irons.  Don’t be afraid to experiment.  That’s the best way to learn.

____________________________________

[1] Hock, Ron, Back Bevels and Plane Geometry, 2010.
[2] Whelan, John, The Cutting Action of Plane Blades, 1993.
[3] Hock, Ron, Back Bevels and Plane Geometry, 2010.

***

About these ads

About Bryant Rice
Bryant has over two decades of management experience as a strategic leader with strong general management, team building and talent development qualifications. He has managed multiple business units generating over $50 million in annual revenue through periods of both explosive growth and economic consolidation. Bryant has a long track record of successful financial and strategic planning, brand management, leadership analysis and talent development, as well as designing and executing improvements to teams’ cultural efficacy and organizational alignment. Bryant holds a Masters in Business Administration (MBA) and a Bachelors in Fine Arts (BFA).

4 Responses to Sharpening Angles for Bench & Block Planes

  1. Koby says:

    Wish I read this article two weeks ago, it would have saved me a lot of frustration, turns out, that I was sharpening then putting the bevel up (on the bench plane)…just flipped the iron, great results. I am a beginner, and those things are not given…thanks anyway

    Liked by 1 person

  2. Iain says:

    Still using the original blade circa 1952 in my Stanley bench plane. my question is , what is the likelihood of this being a better steel than a current day replacement.

    Liked by 1 person

    • Bryant Rice says:

      There’s nothing wrong with using the vintage blade in your Stanley plane, but there’s no comparison when it comes to modern steel alloys. Modern alloys, such as O1 and A2 are superior for edge retention, and the better made blades from Hock, Lie-Nielson, and Veritas are thicker and ground to a much higher degree of precision than your 1950s Stanley, making them much easier to properly sharpen.

      Like I said, there’s nothing wrong with the vintage blades – I use them myself. But if you’re doing a lot of woodworking, treat yourself to a modern blade from one of the makers above. You’ll see a big difference. -Bryant

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 96 other followers

%d bloggers like this: