Open vs. Closed? Mouth vs Throat? – The Adjustable Plane Facts

Adjustable Mouth?  Open or Closed Throat?  Say what?

What’s all the ruckus about adjustable mouth planes? What are they? Do I need one? How do I use it? What’s the difference between adjustable throat planes and adjustable mouth planes?  Good grief, it’s enough to give any new galoot a headache!

Stanley no. 60 with mouth open on left; Stanley no. 18 with mouth closed on right.

What’s the difference?  To clear up the confusion, let’s start with the nomenclature. Both ‘adjustable throat’ and ‘adjustable mouth’ actually refer to the same feature. Both terms are used interchangeably, which is confusing and in my opinion, technically incorrect. The mouth is the rectangular opening that you see when looking at the bottom of the plane. The throat is the area above the mouth on the top side of the plane. The part that is adjustable is the mouth, not the throat.  That said, even Stanley wasn’t consistent in its terminology, listing ‘adjustable throat‘ planes in their catalogs some years and ‘adjustable mouth‘ planes other years.  Far be it from me to argue the point one way or the other, but for the rest of this post, I’m sticking with adjustable mouth.

What is it?  An adjustable mouth on a plane means that the size of the mouth opening can be adjusted, i.e., opened to make it larger or closed to make it smaller. Typically, this is accomplished by sliding the toe section of the plane forward (away from the iron) to increase the size of the mouth opening, or backward toward the iron to decrease it.

Not all planes have adjustable mouths. In the world of vintage tools, adjustable mouths were most commonly featured on the various manufacturers’ premium lines of block planes and a few of their specialty planes. Modern manufacturers like Lie Nielsen and Veritas understand the value of adjustable mouths to woodworkers and feature them on many of their bench planes as well their block planes.

Why do I need it?  The value of having an adjustable mouth on a plane is the ability to increase or reduce the space between the leading edge of the mouth opening and the cutting edge of iron. If you’re making a heavy cut and taking thicker shavings, you want more open space in front of the iron for the shaving to pass. If you’re making a fine cut, taking thin shavings, you need less space in front of the iron.  In fact, you want the opening to be just marginally larger than the thickness of the shaving.

How do I use it?  In practice, the leading edge of the mouth presses down on the wood fibers as you make a cut. Having a ‘fine set’ to your plane (meaning a closed mouth and very shallow depth of cut) keeps the wood in front of the iron tightly compressed.  This enables a very thin shaving with less chance of tear out, in which the wood fibers split well ahead of and below the cut. Opening the mouth accomplishes just the opposite. With less compression, the iron is able to take a thicker cut, and the larger opening allows the shaving to pass through unobstructed up into the throat area.

Naturally, the size of the mouth opening is only half of the equation – you also need to decide how far down to extend the iron based on how deep you want to cut. If you try to take a heavy a cut with the mouth too tightly closed, the shaving will be too thick to pass through the opening and will quickly clog the mouth opening or simply come to a screeching halt.  This effect can be more or less pronounced depending on the type of wood you are working on.

The trick, of course, is finding the right balance between set of the iron and opening of the mouth, but this is truly not as difficult as it might sound. A little trial and error will quickly build experience and give you a ‘feel’ for how to set your plane for the cut you desire. Once you have it set appropriately for what you’re trying to accomplish, the results will be superior to what you would get from a plane with a fixed aperture mouth, which lacks the flexibility for making fine adjustments to the cut.

As a final thought, it is worth pointing out that many planes without adjustable mouths can still be adjusted.  Virtually all bench planes have adjustable frogs.  Moving the frog forward or backward decreases or increases the size of the mouth opening, accomplishing the same goal as an adjustable mouth, even if the process is a little more involved.  Still, that is precisely why Stanley added the frog adjustment feature to their planes in 1907.

Unlike bench planes, the frogs of block planes are fixed, so unless they have an adjustable mouth, you’re stuck with the fixed size opening.  This is why adjustable mouth block planes are more highly regarded and valued by woodworkers.

Common* Vintage Planes with Adjustable Mouths

Stanley nos. 9-1/2, 15, 16, 17, 18, 19 standard angle block planes
Stanley nos. 60, 60-1/2, 65, 65-1/2 low angle block planes
Stanley no. 62 low angle jack plane

Millers Falls nos. 16, 17, 26, 27, 36, 37 standard angle block planes
Millers Falls nos. 46, 47, 56, 57 low angle block planes

Sargent nos. 306, 307, 1306, 1307, 4306, 4307, 5306, 5307 standard angle block planes
Sargent nos. 606, 607, 1606, 1607 low angle block planes
Sargent no. 514 low angle jack plane

Modern Plane Makers

Lie-Nielsen – makes block plane models with adjustable mouths
Veritas/Lee Valley – makes both block and bench planes with adjustable mouths
Stanley – makes modern variations of their vintage counterparts
Wood River/Woodcraft – makes block plane models with adjustable mouths

* This is not a complete list, but includes the most common planes for use.

For more information on plane nomenclature, please refer to the Plane Terminology page for a full dictionary of plane parts and terms.

***

Advertisements

The Restoration of Tools and Refinement of People

The following post was originally published on The Character of Leadership in 2010:

“I have a thing for old tools.  Not the ones with cords and plugs, mind you, but old hand tools that predate electricity.  The ones guided by hand, powered by muscle, carefully honed and meticulously cared for to retain their edge and effectiveness at doing the job for which they were intended.  These are elegant, tactile tools of history, character and quality – tools upon which the livelihood of their owner depended.  These tools didn’t sit collecting dust on shelves in garages, used casually or occasionally and allowed to rust.  These were tools of journeymen and tradesmen, carpenters, cabinet makers, shipbuilders, and carriage makers – tools that were passed down through multiple generations.  Every one has a story to tell; every paint spot, dent, ding, scratch and chip reflects a different point in time and a different job completed.

Sadly, most of these tools eventually fell victim to post-WWII modern industrialization when mass production, cheap technology, and the population explosion shifted consumer culture from quality and durability to speed and ease of use.  Today, we’ll spend $200 on a cordless drill and toss it out when the battery no longer holds a charge.  All the while, the noble tools of iron, steel, and wood that built this country sit quietly idle, rusting away in barns and workshops and garages.  Few know how to use them, fewer still know how to restore them to functional condition, and just about everyone else wonders why bother doing either.  I am one of the relative few who does both.

Opinions on the restoration of old tools vary widely and are frequently debated within their communities of interest.  I personally believe that less is more when it comes to restoration. I like the idea of retaining a tool’s character – its scars and marks from use, its patina, etc.  I believe a tool should be cleaned and maintained in the same manner as the original craftsman who owned it would have done. A hundred years ago, these tools represented the livelihood of the owner. They were relatively expensive and the woodworkers who owned them relied on them to make a living. They would not have allowed rust to accumulate and would have cleaned and oiled them regularly.

Refining people is not unlike the restoration and care of vintage tools.  Regardless of age or experience, there are always rough edges to be eased, working mechanisms in need of adjustment, and business implements to be sharpened to produce the desired result.  People in an organization require constant tuning and ongoing maintenance in order to function at their peak capacity.  Good leaders exist, not simply as masters of the tools they wield.  Rather in the manner of fine craftsmen, they are charged with refining, tuning, and honing the tools in their care, through the edification and development of the men and women they lead.

The refinement of these human tools requires a firm but gently touch.  In time, their mettle (pun intended) is reflected in a patina developed through experience, accomplishment, and occasional failure.  Skills develop through hands on instruction and are shaped by practice.  The quality of results improves as the tool is tuned to achieve the task intended.   Adjustments are made, impurities cleaned, and accomplishment is rewarded until eventually the tool attains a confidence, character, and integrity all its own.  Shavings are gossamer thin, lines are cut straight and true, and revealed in every achievement is the precision of the tool and the influence of its custodian.

Without constant care, tools become dulled by use – corrosion slowly creeps in, alignment is eventually lost, and the ability of the tool to perform as expected is compromised.  Just as the journeyman of 100 years ago was personally responsible for the care and maintenance of his tools, so are the business leaders of people today.  In a culture where tools are deemed disposable, easily replaced by a trip to the local home center, leaders of people cannot afford to be so cavalier.  These human tools represent the livelihood of the organization. They are relatively expensive and the companies that employ them rely on them to sustain and grow the business. They must not be allowed to fall idle and rust.”

***

Tools shown in the photos were returned to functional condition by Virginia Toolworks using museum quality archival preservation techniques.  Sharpened and tuned for use, every tool is fully tested and adjusted until perfect.

Deconstructing the Wright Flyer

I spent this past week on vacation at the beautiful Outer Banks of North Carolina.  The OBX is one of my favorite places on earth, and I’ve been visiting just about every year for the past 30 years.  Despite its growth and development, especially over the last 20 years, there is still something raw about the Outer Banks.  Mother Nature may have yielded some of her land, but the spirit of the place is still very much wild, a precarious thin line of sand at the mercy of the Atlantic Ocean.  It was here, on the sandy dunes of Kitty Hawk and Kill Devil Hills back in December of 1903, that Orville and Wilbur Wright first flew a heavier-than-air craft under its own power.

Kitty Hawk CampSitting on a dune deck overlooking the Atlantic just a few miles from Kitty Hawk this week, I got to thinking about just what kind of tools the Wright brothers might have used when building the Wright Flyer.  The plane’s wings were constructed of spruce and ash covered with muslin.  The rest of the frame was metal, not at all surprising considering the Wrights were machinists, not woodworkers.  After all, they designed and developed the Flyer in their Ohio bicycle shop.  They favored coastal North Carolina for its windy dunes and because it was remote – competition for flight was intense and they didn’t want a lot of press at that point.

Fortunately, the construction of the plane has been exhaustively researched and documented, not a task as simple as one might assume since the Wrights were very secretive, didn’t keep detailed plans of the design, and constantly made changes on the fly (no pun intended). [1]  The plane’s framework “floated” within fabric pockets sewn inside, making the muslin covering an integral part of the structure. This ingenious feature made the aircraft light, strong, and flexible. The 1903 Flyer was powered by a simple four-cylinder engine of the Wrights’ own design.  To fly the airplane, the pilot lay prone with his head forward, his left hand operating the elevator control. Lateral control was achieved by warping the wing tips in opposite directions via wires attached to a hip cradle mounted on the lower wing. The pilot shifted his hips from side to side to operate the mechanism, which also moved the rudder. [2]

Wingspan: 12.3 m (40 ft 4 in)
Length: 6.4 m (21 ft)
Height: 2.8 m (9 ft 3 in)
Weight, empty: 274 kg (605 lb)
Engine: Gasoline, 12 hp
Manufacturer: Wilbur and Orville Wright, Dayton, Ohio, 1903

Construction

Wright Cycle ShopMy interest in the Flyer was centered on the woodworking tools and techniques that might have been employed.  However, in researching the Wrights, their shop, and the Flyer, it became clear that the woodworking aspect of the plane’s construction was incidental at best.  Obviously the focus (both then and now) was on the science – weight, power, aerodynamics, and control.  Records of their workshop reveals it was sparse with relatively few tools, and those tools they had were mainly dedicated to metal work.[2]  The bicycle shop had a 14″ Putnam Lathe, a 20″ Barnes drill press, and a 26″ Cresent bandsaw.   References confirming this are attributed to a book, “Charles Taylor, Mechanician.”  Taylor, of course, was the man who built the aluminum engine specifically for the Flyer.

Orville Wright at work in ShopThe propellers, wing struts, and wing framework were the only parts of the aircraft that were made of wood.  Since the Flyer was designed to be portable, joinery was all temporary and removable, using clips and brackets that were fabricated of metal.  In fact, it can be assumed that the decision to use of wooden components was probably based on practicality.  Orville and Wilbur wanted to keep the weight and cost down, and wooden parts were easy to replace if broken.  Lightweight metals like aluminum, which was used for the engine, were still comparatively expensive at the turn of the century.  Parts made of Spruce were strong, lightweight, and cheaply replaceable.

While I could not find any direct reference to the woodworking tools and techniques employed to make the wooden parts of the plane, looking at detailed photos of the components provides some insight.  With the exception of the propellers, which were hand carved, the rest of the parts were fairly simple and utilitarian in both design and execution.  Also, given the fact that the Wright Bicycle Shop was a metalwork business, and the Wrights were cheap about their outlay for tools and equipment, it’s safe to assume that the wooden components were formed using the most basic of woodworking hand tools – Saws, planes, spokeshaves, and chisels.

Wright Shop Tools

It turns out that, from a woodworking perspective, the most interesting component were the propellers.  As mentioned, the propellers were carefully hand carved to achieve the greatest possible efficiency.  The Wrights thought propeller design would be a simple matter and intended to adapt data from shipbuilding.  However, their library research disclosed no established formulas for either marine or air propellers, and they found themselves with no sure starting point. They discussed and argued the question, sometimes heatedly, until they concluded that an aeronautical propeller is essentially a wing rotating in the vertical plane. On that basis, they used data from more wind tunnel tests to design their propellers. The finished blades were just over eight feet long, made of three laminations of glued spruce. The Wrights decided on twin “pusher” propellers (counter-rotating to cancel torque), which would act on a greater quantity of air than a single relatively slow propeller and not disturb airflow over the leading edge of the wings.[3]

Wilbur Wright At Lathe c. 1897The propeller blade is shaped like an airfoil and there is a pressure difference created across the blade because of the motion of the spinning blade. The pressure difference causes large amounts of air to be accelerated through the plane of the propeller and the reaction of the vehicle to this motion generates a force called thrust. The thrust pushes the aircraft forward in accordance with Newton’s first law of motion.  The use of high speed (~350 revolutions per minute), thin propellers on their aircraft was one of the major breakthroughs for the Wright brothers and allowed them to succeed where others failed. At the time, others employed low speed, thick bladed propellers, much like the blades of a wind mill. But the brothers correctly determined that high speed, thin propellers are more efficient than low speed thick blades. [4]

Fortunately, the Wright Flyer was a far more impressive piece of engineering than it was an example of turn of the century woodwork.  Call it a little vacation inspired curiosity, but I enjoyed exploring this important piece of history this week.  If you’re lucky enough to visit the Outer Banks, I highly recommend a trip to the Wright Memorial National Park at Kill Devil Hills.  Following an afternoon at the park, make sure you drive down Collington Road to Billy’s Seafood, one of the area’s more recent national treasures.  Best steamed crabs on the beach!

Steamed Crabs

_______________________________________

1. The Wrights left an obscure trail to follow, carefully guarding their findings and working in secrecy. As a result, little is available in the way of blueprints, designs or instructions. – http://www.countdowntokittyhawk.com/flyer/2003/construction.html
2. National Air and SpaceMuseum, http://airandspace.si.edu/exhibitions/gal100/wright1903.html
3. Wikipedia http://en.wikipedia.org/wiki/Wright_brothers
4. Nasa, http://wright.nasa.gov/airplane/propeller.html

***

 

Millers Falls Plane Specifications

Specification charts for Millers Falls planes have now been added to the site under the Tools menu.  Included are charts for bench planes as well as block and specialty planes.  These charts provide Stanley equivalents where applicable.

There is also a bench plane conversion chart cross-referencing planes made by Stanley, Sargent, Millers Falls, and Record.  I plan to have additional information available in the near future, including comprehensive information on both Millers Falls and Sargent.  In the meantime, enjoy!

Millers Falls page
Bench Plane Specifications Chart
Block Plane Specifications Chart
Plane Cross Reference Chart

***

Stanley Type Studies and More Now Posted!

I’ve just about finished uploading the Bailey and Bed Rock type studies, specification charts, and block plane dating information to the site.  There’s a wealth of information here, both summarized and broken down in detail by the major individual components.  The Bailey and Bed Rock type studies are relatively easy to find elsewhere online, but you won’t find the specification charts or information on dating your block plane anywhere but here!

Look for more information like this coming to the site over the next month or so, including specifications, conversion charts, and type studies for other models and manufacturers including Millers Falls, Sargent,  and Record.

By the way, if you’re new to collecting, don’t miss the post on understanding type studies.  It takes some of the mystery out of the madness.

Specification Charts

Stanley Bailey Bench Plane Chart
Stanley Bed Rock Plane Chart
Stanley Block Plane Chart

Type Studies

Bailey Type Study
– Bailey Detailed Identification
Bed Rock Type Study
Block Plane Dating

Understanding Type Studies

***

 

Understanding Type Studies

Catalog Image of Stanley Bailey Smoothing Plane, c. 1880sLet’s be honest, Type Studies are confusing to a lot of people, especially those new to tool collecting. One reason for this is that by their very nature, Type Studies attempt to identify very specific points in time that correspond with transitions in the design and manufacturing process of tools made in the past. There are many problems with this.  First and foremost, manufacturers never imagined that anyone in the future might care about tracking changes in the evolution of their designs.  Subsequently, even veterans who know better sometimes lose sight of just how blurry those lines of delineation are along the historical manufacturing timeline.

The first thing to clearly understand is that Type Studies are a present day construct. They were not a production guide used by manufacturers to identify, notate, or track changes in design.  Stanley and their competitors didn’t follow Type Studies.  Why, you ask?  Because Type Studies didn’t exist at the time the tools were made.  Did you get that?  Type Studies are a present day guide.

It was not until the 1970s and ’80s that people really started thinking about collecting vintage hand tools. And it’s only in the last 10 or 15 years, when woodworking with hand powered tools has enjoyed a resurgence, that vintage tool collecting has started to explode in popularity.  The big name hand tool aficionados (Roger Smith, Alvin Sellens, Clarence Blanchard, and others) conducted extensive research, pouring over company records and old catalogs and detailing the physical variations of thousands of tools in order to begin piecing together timelines for various models.

These timelines, delineated by significant and important changes in the design and manufacture of a tool are referred to as Type Studies.  Different ‘Types’ within a Type Study refer to a defined period of manufacture in which a particular set of features was unique.  That said, the change from one Type to another doesn’t mean the entire tool was redesigned.  In fact, virtually all feature changes overlapped others, and a given feature or set of features might extend over several Types.  A good example can be illustrated with the lever caps used on Stanley’s Type 13-15 bench planes made between 1925 and 1932.  While the same design cap was used on all three types, there were other feature changes that delineate the three different date ranges on the Type Study time-line.

Summing it all up, here are five important confusion-busting facts about Type Studies that should provide clarity:

    1. Type Studies are modern-day timelines used to identify the age of a tool by referencing important changes in its design, manufacture, and physical characteristics.  Different ‘Types’ within a Type Study refers to a particular period of manufacture in which a particular feature or set of features was unique.
    2. Manufacturers didn’t adhere to Type Studies because Type Studies did not exist at the time.  They simply manufactured tools and made periodic changes to design and manufacturing processes, just like manufacturers today.  We identify those periodic changes in the Type Study, and subsequently assign ‘Types’ based on the time period in which they were made.
    3. Type Studies are not interchangeable.   They only apply to a specific model or series of tools.  Different tools and different lines will have different Type Studies.  For example, Stanley’s Bailey line of bench planes have a completely different Type Study from the Bed Rock series.   Some tools, like the no. 71 router plane, have their own individual Type Study.  Many tools have never been studied in depth and don’t have a Type Study at all.
    4. Type Studies are approximations.  The manufacturing timeline was constantly evolving.  Even when design changes were made, existing (old) stock parts were used until their supply was depleted before moving to new parts.  Therefore, the changeover of features sometimes took months or even years, resulting in multiple variations of the same product being released at the same time.  While Type Studies imply that these changes were aligned with a specific date or year, collectors need to understand that the transitions were more evolutionary than revolutionary.
    5. Type Studies are not all-inclusive.  With some manufacturers and some tools, and some tools made during certain periods, features and materials varied quite a bit.  A good example of this is Stanley’s offering of Bailey bench planes made during World War II.  Brass was in short supply, and subsequently, the so-called Type 17 planes made during the war years have a variety of inconsistencies.  Some had brass hardware, where others have steel.  Some have rosewood knobs and totes, while others have painted hardwood.  Some have frog adjustment mechanisms while others don’t.   All made during this period, however, are considered Type 17, regardless of features.

***

%d bloggers like this: