Everything You Ever Wanted to Know About Stanley Bed Rock Planes

317 SBR605C Type 6 Post 1

Stanley Bed Rock no. 605C, Type 6, c. 1912-1921

History

The motivation behind Stanley’s decision to develop the Bed Rock line of planes is debatable. However, given their genius at marketing and creating demand, I suspect it was driven by a couple of different factors. In 1895, Justice Traut patented what would become the basic Bed Rock design. That same year, E. A. Schade patented the frog adjustment feature that would initially be used on the Bed Rock planes, and eventually (1907) would become a mainstay feature of the Bailey line of planes.

US536746-Traut Bed Rock0

J. A. Traut Patent 536,746, Apr 2, 1895

US545732-Shade Bed Rock

E. A. Schade Patent 545,732, Sept. 3, 1895

The introduction date of Bed Rock planes is a little uncertain. They first appeared in Stanley catalogs in 1900, but there is some evidence they may have begun manufacture as early as 1898. Apparently there was a dispute over the Schade patent, because those sold for the first year or two have the Sept. 3, 1895 patent date on the bed milled out.  This was done by the factory, and after the body had been japanned, indicating there was some sort of legal dispute over the Schade patent that required a last minute intervention prior to the planes being sold to the public.  By 1900, the milled out date was gone and just the single APR 2, 95 date from the Traut patent remained stamped into plane bodies until about 1911, when Stanley introduced a major design change.

Differences between Baileys and Bed Rocks

The Bed Rock line was marketed as Stanley’s premium line of bench planes. There were two primary differences between the Bailey line and the Bed Rocks, and both were in the frog design.

1. The mating surfaces of both plane body and frog was substantially larger than on the Bailey planes, and the frog on the Bed Rock fit into a groove on the body, eliminating any slop or shifting of the frog once in place. As Stanley described it in their marketing material:

The absolute solidity and one-piece effect of the “BED ROCK” PLANE is as much a fact as if the parts were all one, for the reason that the entire under surface of the Frog is in perfect contact with the solid seat cast in the Plane Bottom. The frog and the Bottom are so perfectly fitted together, that from the Plane Iron to the Bottom, the Plane is as one solid piece of metal. This form of construction positively prevents any chance of vibration.

2. Additionally, the Bed Rocks originally featured the frog adjustment mechanism that was patented by Schade on Sep. 3, 1895.  This same feature was eventually added to the Bailey line in 1907. Again, as described in a Stanley catalog:

The width of the mouth may be regulated and made wider or narrower as coarse or fine work may require. First remove the lever and cutter and loosen the two frog screws that fast en the frog t o it s seat. With a screw driver turn the center adjusting screw to the right to close the mouth, and to the left to open it. When the frog is in the position desired, tighten the frog screws and replace the cutter and lever .

Of course, there were other less significant differences as well. Interestingly, Stanley used the same numbering system for the Bed Rocks as the Baileys for the first 2 years of manufacture. It wasn’t until 1900 that the ‘600’ series of numbers (602 through 608) were cast into the plane bodies.  Stanley also had a Bed Rock branded lever cap that was used to help distinguish the two lines. The first design of this cap was marked ‘STANLEY’ on one line, then ‘R.&L.Co.’ on a middle line, with ‘BED ROCK’ on the bottom line. In 1908 the middle line was removed and caps were marked ‘STANLEY’ over ‘BED ROCK.’

Stanley Bed Rock no. 607 Type 3 c. 1900-1908

Stanley Bed Rock no. 607 Type 3 c. 1900-1908

Major Design Changes of 1911/1912

After the frog adjustment feature was added to the Bailey line in 1907, there was little to clearly differentiate the Bed Rock planes from the Bailey planes. For example, while the frog base design was arguably superior, it was a feature that was not readily apparent unless one were to disassemble the plane. Further, up until this point, the profile of the plane base was the same on both Bailey and Bed Rock lines; with both using the same classic ‘hump’ on each cheek. For Stanley to differentiate the two and justify the premium cost of the Bed Rock, it’s pretty easy to see the reasoning behind the changes they were about to make.

1. On March 14, 1911, Schade was granted another patent for the use of pins and set screws to both attach and adjust the position of the frog. This new design was superior to the previous (and the one provided on the Bailey planes), and set the Bed Rock line apart from all of Stanley’s competitors.

E. A Shrade Patent 987,081, Mar 14, 1911

E. A. Schade Patent 987,081, Mar 14, 1911

The Two Frog Attachment and Adjustment Designs

The Two Frog Attachment and Adjustment Designs

2. In addition to the new frog attachment and adjustment design, Stanley, in a move of marketing brilliance, also changed the profile of the body casting, flattening the tops of the cheeks to give the Bed Rock planes a unique look all their own. With such a clear visual distinction, it’s not hard to imagine that this decision was intended to induce those with the financial means to spend a little more and buy the premium Bed Rock planes.

3. The third major change was the addition of a raised receiver for the front knob, and the transition from the low knob to the high knob. It’s interesting that high knobs weren’t introduced to the Bailey line for another 8 years, and the raised receiver wasn’t added to the Bailey design until 1929, some 19 years later!

Miscellaneous

The Bed Rock line included pretty much the same assortment as the Bailey line, with the omission of a number 601, which was never produced. The line included everything else from the 602 to the 608, including half sizes and corrugated versions. The only other exception is that they never made a corrugated version of the 605 1/4.

Bed Rocks were slightly heavier planes with slightly greater mass. The 1934 Stanley catalog offers a comparison, with the no. 603 weighing 1/4 lb more than the Bailey no. 3, and the no. 608 weighing 1/2 lb more than the no. 8.

Prior to the 1911/1912 changes, Stanley manufactured Bed Rock style planes for both Winchester and Keen Kutter. These planes were very similar in design, varying mainly in the lateral adjustment levers, lever caps, and numbering system.

Bed Rock Flyer Bed Rock Flyer-1923

Bed Rock Type Study

The chart below is a summary Type Study of Stanley Bed Rock Planes based on Bob Kaune’s thorough 1996 study and additional research I have conducted over the past several years.   Please note that all type studies are approximate as production variations throughout the manufacturing years were quite common.   Also keep in mind that Type Studies are present day references, time-lines that map changes in the design and features of tools manufactured in the past.  Understand that neither Stanley nor any other manufacturer followed type studies.  They didn’t exist at the time.  In fact, it is only in the last 30 years or so that type studies have been assembled through historical research and the physical inspection of hundreds or thousands of tools made over the years.

Bed Rock Distinguishing Features By Type

Dates

Low Knob – Rounded Sides

Type 1 Beds marked with Bailey model numbers (Nos.2 to 8.)
Space below “PAT’D APR. 2. 95″ was milled out at the factory
S casting mark on bed (a single raised dot on some specimens)
Frogs & Lever Caps have “B” casting marks
Lateral lever has two patent dates “10-21-84 & 7-24-88”
STANLEY R & L CO…BED ROCK on lever caps, Q trademark stamp on most irons

1898

Type 2 7-24-88 is the only patent date on the lateral adjustment lever

1898-1899

Type 2a Model No.603 and 604 beds (only these two) were marked “No.60x”

1899

Type 3 All beds now marked with “600” numbers, i.e.; No.602 – 608
No milled space below “PAT’D. APR. 2. 95.” on bed, B casting marks
Frogs of some planes are nickel-plated on the machined surfaces

1900-1908

Type 4 B casting marks eliminated. No patent dates on the lateral adjustment lever
Lever caps now marked “STANLEY….BED ROCK”
Some irons have “S” trademark stamp, later planes have “T” trademark stamp

1908-1910

High Knob – Flat Sides

Type 5 Beds now marked “BED ROCK” in addition to “600” model numbers
2 patent dates behind frog, “PAT’D. APR. 2. 95″ & APR. 19. 10″
Flat-top sides introduced for first time
Raised knob receiver (flat version), Tall knobs introduced, “T” tm on irons
Frogs are now attached to beds with adjustment pins and set screws

1911

Type 6 Lever caps now marked “BED ROCK”
Irons stamped with “V” trademark or “X” trademark stamps

1912-1921

Type 6a 1-1/4″ diameter frog adjustment wheel
Iron stamped with “Y” Trademark (1922-1923)

1922

Type 7 One patent date behind the frog – “U.S. PAT. APR. 19. 10.”
Lever caps marked “STANLEY” only in the notched rectangular logo
Irons stamped with “AA” Trademark (1923-1935)

1923-1926

Type 8 Bed now stamped “MADE IN USA” in addition to the one patent date
Knob receiver boss now cupped for fitting knob

1927-1930

Type 9 Beds no longer have a patent date; stamped “MADE IN U.S.A.” only
Some lever caps nickel-plated with orange paint behind STANLEY logo

1931-1932

Type 10 Beds of No.603, 604 & 605-1/4 planes have raised handle receivers
Some frogs have orange paint on sides like Bailey planes
Lever caps now have kidney-shaped bolt holes
Irons stamped with BB tm starting in 1936

1933-1941

Type 11 Castings are heavier and thicker during war production years
Finishes left rough; lever caps not plated or polished

1942

Type 12 Frog adjustment nut either hard rubber or small diameter steel
Knob and handle are hardwood (maple) with dark varnish stain
All brass parts eliminated during war-time production
END OF PRODUCTION FOR BED ROCK PLANES

1943

The chart below lists specifications for Stanley’s line of Bed Rock planes.

Plane No. Dates Made Iron Width Length Weight
No. 602 1898-1942 1 5/8 7 2 lb 4 oz
No. 602C 1898-1923 1 5/8 7 2 lb 4 oz
No. 603 1898-1943 1 3/4 8 3 lb 4 oz
No. 603C 1898-1935 1 3/4 8 3 lb 4 oz
No. 604 1898-1943 2 9 3 lb 12 oz
No. 604C 1898-1935 2 9 3 lb 12 oz
No. 604 1/2 1898-1935 2 3/8 10 4 lb 12 oz
No. 604 1/2C 1898-1935 2 3/8 10 4 lb 12 oz
No. 605 1898-1942 2 14 4 lb 8 oz
No. 605C 1898-1935 2 14 4 lb 8 oz
No. 605 1/4 1925-1943 1 3/4 11 1/2 4 lb
No. 605 1/2 1898-1935 2 1/4 15 6 lb 8 oz
No. 605 1/2C 1898-1937 2 1/4 15 6 lb 8 oz
No. 606 1898-1941 2 3/8 18 7 lb 6 oz
No. 606C 1898-1934 2 3/8 18 7 lb 6 oz
No. 607 1898-1943 2 3/8 22 8 lb 12 oz
No. 607C 1898-1935 2 3/8 22 8 lb 12 oz
No. 608 1898-1940 2 5/8 24 9 lb 12 oz
No. 608C 1898-1935 2 5/8 24 9 lb 12 oz

_________________________________

References

Kaune, Bob, Bed Rock Type Study, 1996

Sellens, Alvin, The Stanley Plane, 1975

Smith, Roger, Patented Transitional & Metallic Planes In America, Vols. I & II, 1992

Walter, John, Stanley Tools – A Guide to Identity & Value, 1996

Various Stanley catalogs, flyers, pamphlets

Advertisements

Tool Profile – The Stanley Bailey no. 2C Plane

033 SB2C Type 8 - 1

Stanley Bailey no. 2C Smoothing Plane, Type 8 (c. 1899-1902)

The diminutive Stanley no. 2 plane has long been a collector’s favorite, second only to the tiny no. 1 in its appeal among bench planes. Produced from 1869 to 1961 and measuring just 7 inches long with a 1-5/8″ iron, this smoothing plane is useful for working smaller pieces or in confined spaces.

The corrugated version of the no. 2, designated the no. 2C, was never a popular model. Although offered from 1898 to 1943, comparably few were actually produced, making this one of the rarest of Stanley planes. The corrugations were provided to help reduce friction. Whether or not they actually help, or were a marketing gimmick, is debatable, but the feature was more popular on the larger bench planes than on the no. 2.

033 SB2C Type 8 - 5

The corrugated sole of the rare Stanley no. 2C

The no. 2C shown here is part of my personal collection and is currently offered for sale for a limited time.

Solving Those Pesky Blade Depth Frustrations

New users of hand planes frequently have trouble figuring out just how to get the iron (blade) to fit through the mouth on the plane’s body. I get this question in both emails and I also see it reflected in the search parameters for those who visit the site. The challenge is to get everything set so the iron extends through the mouth without jamming up at the front of the opening.

Well fear not, for here is a simple illustrated guide to getting it done quickly and hopefully without frustration!

There are basically 5 things that have to be set correctly in order for shaving wood to begin:

  1. The iron must be attached to the cap iron correctly, with the cap iron attached to the flat unbeveled side of the iron. This may very well be the greatest cause of problems. The cap iron should be positioned to within about 1/32″ to 1/16″ of the cutting edge of the iron. (Figures 1 and 2)
  2. The frog must be positioned correctly, neither too far forward or too far toward the rear.  There’s room for adjustment, of course, but it’s a good idea to start with it aligned with the rear edge of the mouth. You can then move it forward to fine tune the cut as appropriate. (Figures 3 and 4)
  3. The iron and cap iron assembly (once screwed together) must be positioned absolutely flat against the face of the frog. You may have to jiggle it around a little to make sure it falls into place over the frog’s adjust yoke. (Figure 5)
  4. The Lever Cap must be set with enough pressure to hold the iron firmly, but not so tight that the depth adjustment can’t work. There’s a sweet spot there, you just have to find it through trial and error.
  5. Use the lateral adjustment to align the cutting edge so it’s parallel to the mouth opening. In some cases you may have to tap the edge of the iron a little to get into a workable position. I use a small brass hammer so as not to mushroom the edge of the iron, but it’s not critical. (Figures 6 – 8)
Figure 1 - Note the cap iron is attached to the Unbeveled side of the iron

Figure 1 – Note the cap iron is attached to the Unbeveled side of the iron

Figure 2 -

Figure 2 – View from the bottom, the attachment screw should be on the same side as the iron’s beveled edge

Figure 3 - Loosed the frog bolts (blue arrow) and position the frog so it aligns with the rear edge of the mouth (red arrow)

Figure 3 – Loosen the frog bolts (blue arrow) and position the frog so it aligns with the rear edge of the mouth (red arrow)

Blade Set 4

Figure 4 – Stanley planes made after 1907 have a frog adjustment screw, which is used to easily fine tune the position of the frog.

Blade Set 5

Figure 5 – Ensure the iron seats flush against the face of the frog

Figure 6 - The edge of the iron should extend over the mouth opening as shown

Figure 6 – The edge of the iron should extend over the mouth opening as shown

Figure 7 - Viewed from the bottom, the iron when retracted should look like this

Figure 7 – Viewed from the bottom, the iron when retracted should look like this

Figure 8 - As you turn the big brass adjustment knob, the iron will move forward and extend down through the mouth opening just enough to shave wood!

Figure 8 – As you turn the big brass adjustment knob, the iron will move forward and extend down through the mouth opening just enough to shave wood!

Note that if you’re doing fine finishing work you may need to go back and move the frog forward slightly to reduce the space between the front of the mouth opening and the cutting edge. This space should approximate the thickness of the shavings you expect to produce, so it’s typically very small on smoothing planes, while a little larger on jointer and fore planes.

Hopefully this provides answers to questions and solves one of the initial frustrations when using hand planes for the first time!

***

 

 

Stanley Trademark Stamps

The following reference guide provides examples of Stanley’s trademark stamps from 1872 to the present. It is by no means comprehensive or complete, but this covers the main trademarks. There were often variations used on block planes and other tools. Some of the photos are pretty poor. I will try to photograph better examples as time goes by.

A.1 Trademark (1872-1874)

A.1 Trademark (1872-1874)

A.4 Trademark (1879-1885)

A.4 Trademark (1879-1885)

A.5 Trademark (1886-1890)

A.5 Trademark (1886-1890)

J Trademark (1874-1884) *Longer on Block Planes

J Trademark (1874-1884*) *~1909 on Block Planes

JJ Trademark (1890-1910) Used on Block Planes

JJ Trademark (1890-1910)
Used on Block Planes

P Trademark (1886-1890)

P Trademark (1886-1890)

Q Trademark (181-1904)

Q Trademark (1891-1904)

S Trademark (1907-1909)

S Trademark (1907-1909)

T Trademark (1909-1912)

T Trademark (1909-1912)

V ("Victory") Trademark (1912-1918)

V Trademark (1912-1918) Also called “Victory”

X Trademark (1919-1920) 1st "Sweetheart"

X Trademark (1919-1920)
1st “Sweetheart”

X Trademark (1919-1920) Block Plane Variation

X Trademark (1919-1920)
Block Plane Variation

X Trademark (1919-1920) Block Plane Variation

X Trademark (1919-1920)
Block Plane Variation

X Trademark (1919-1920) Block Plane Variation

X Trademark (1919-1920)
Block Plane Variation

Y Trademark (1920-1921) 2nd "Sweetheart"

Y Trademark (1920-1921)
2nd “Sweetheart”

Y Trademark (1920-1921) Block Plane Variation

Y Trademark (1920-1921)
Block Plane Variation

Y Trademark (1922) Canadian Variation

Y Trademark (1922)
Canadian Variation

AA Trademark (1922-1935) 3rd "Sweetheart"

AA Trademark (1922-1935)
3rd “Sweetheart”

AA Trademark (1923-35) Canadian Variation

AA Trademark (1923-35)
Canadian Variation

BB Trademark (1935-Present)

BB Trademark (1935-Present)

 

New Planes vs. Vintage Planes

Stanley-Bailey-5.5C-Type-14One of the first questions many people contemplating their first  plane purchase ask is “Should I buy a new plane or vintage plane?” Indeed, this was the first question I asked before my first purchase many years ago. There is no simple single right or wrong answer. It depends on a few different factors:

  • What is your budget?
  • What is the plane’s intended use?
  • Are you willing to invest a little time setting it up and tuning it for use?

Virtually any plane you buy, new or vintage, is going to need some degree tuning and sharpening. The modern hardware store planes will require virtually the same tuning process as a 100 year old Stanley or competitor. Even a brand new Lie Nielsen or Veritas (both of which I am a huge fan) will need a final honing, if nothing else. The quality of hand tools today is generally abysmal. The demand and quality for hand tools fell sharply after WWII as electrically powered tools took off and the era of self-sufficiency evolved into one where paid tradesmen were hired for jobs around the home.  It’s only in the last decade or two that niche companies like Lie Nielsen and Veritas have again produced hand planes that are of acceptable quality for fine woodworking. These, however, come at a cost.

Lie Nielsen Smoothing Plane

Lie Nielsen Smoothing Plane

If you’re a professional or serious woodworker, investing $200 to $400 in a precision plane is arguably justifiable. Both companies mentioned above manufacture extremely high quality tools. On the other hand, the planes found at local hardware stores, big box retailers, and even some specialty shops – those generally under $150 – are simply not in the same class.  Quality of materials, manufacture, fit and finish are often quite poor. And it’s important to note that these brand new sub-$150 planes will undoubtedly require at least a couple hours worth of tuning and sharpening to make them function correctly.

By contrast, the vintage planes made by companies like Stanley, Sargent, Union, and others, especially from about 1910 to 1940, were of excellent quality, and are generally superior to most of the planes made today, especially those under the $100 to $150 price point.  These planes can be found in antique shops, yard sales, tool swaps, and eBay, often for as little as $10 and rarely (depending on the model and rarity) over $100. The caveat with vintage tools is that they will almost always need some degree of restoration and tuning.  Like the cheaper new store bought planes, the sole may need lapping, the frog face flattened, rough surfaces smoothed, and the iron sharpened and honed. However, for the same investment in time and effort, you will likely end up with a far superior plane for less money than you would have spent at your local big box hardware store.

Stanley Bailey no. 2, Type 8

Stanley Bailey no. 2, Type 8

If you have a couple hundred dollars to spend and want the best CNC machined plane money can buy, a Lie Nielsen is a good investment. However, if you’re like most people just starting out, pick up one (or even two) vintage Stanley planes and give them a try. The knowledge gained by disassembling, tuning, and sharpening it will actually aid in your understanding of its mechanics and function. Here are a few resources from the Virginia Toolworks site that might help:

***

Plane Restoration for Use – Extreme Salvage Edition

Let’s face it, not all planes and tools are salvageable.  Sometimes, the neglect and decay is so extreme that the best you can do is pilfer them for parts. Other times, the tool can be saved, but nothing short of a full refinishing effort is in order. As anyone who reads this blog will know, my principled philosophical approach is one of preservation, to retain as much of the original finish and character of the tool as possible. I focus the majority of my time and effort on tools that are good candidates for that sort of conservative preservation methodology. However, there are tools that occasionally cross my path that require a heavier hand.

In this post, I will detail one of the many methods you might employ to restore a heavily rusted plane for use. I found this Stanley no. 4 on eBay for around $10 plus shipping. It’s a Type 19, dating from the 1950s, and as you can see from this eBay auction photo, was in horrible condition.

SB4-T19 ebay

Stanley No. 4 – eBay Auction Photo

And here’s a shot I tool myself before beginning the restoration. As you can see, it actually looked a little better that the eBay photo indicated. Just a little…

SB4-T19 Rest1

Photo taken just before restoration

As with any restoration, the first step is complete disassembly.

SB4-T19 Rest2

Plane completely disassembled

With heavy rust like this, I used a razor blade scraper to remove as much of the surface crud as possible. I started with the iron and cap iron, then continued with the plane body and frog face.  With a little care, this can be accomplished without scratching or gouging the surface of the metal, and it’s amazing how much of the rust you can remove. You can see in the photo below the effect of having scraped the right half of the cap iron, and the lower three quarters of the iron.

SB4-T19 Rest3

Note the contrast of scraped vs. unscraped metal

Here’s a close up. Note the difference. The nice thing about this is virtually all of the patina remains on the surface of the metal. You can leave it this way if you prefer, or continue on as I will show in the next step.

SB4-T19 Rest4

Close-up showing the scraped and unscraped iron and cap iron

Since this was a later model Stanley (less valuable) and destined for shop use, I decided to scrub it down to a clean surface, removing all traces of rust, corrosion, and subsequently age and patina. There are several ways to go about it at this point (chemical anti-rust agents and electrolysis for example), but I decided to stick with doing it the old fashioned way – elbow grease. Using 220 grit sandpaper lubricated with WD40, I scrubbed down all the exposed surfaces. The light oil really softens the effect of the sandpaper, greatly reducing any visible scratches.

SB4-T19 Rest9

Oil sanding using 220 grit wrapped around a wood block

The screws, nuts and hardware were brushed using a soft steel 6″ brush on my bench grinder. Finally, everything was scrubbed using a general purpose cleaner. Low and behold, the japanning on the bed was actually quite good under all that crud.  I finished up by using an citrus degreaser (not shown in the photos). As you can see, the difference from where I started is pretty striking.

SB4-T19 Rest10

Big difference, huh? This is starting to look like a plane again.

I don’t like my brass components highly polished. I used oil lubricated steel wool and a small steel brush to clean them up for this plane. The lighting in the “after” photo makes the brass look a bit brighter than it actually was.

SB4-T19 Rest12

Brass before cleaning

SB4-T19 Rest13

Brass after cleaning

The final consideration is the hardwood tote and knob. Much of the original finish was gone and what remained was in bad shape. I lightly sanded the entire surface, applied a gel stain, and when dry, topped it with a couple of coats of varnish.  Once completely dry and cured, I polished it up using paste wax.

SB4-T19 Rest14

Tote and knob in original condition

After refinishing

After refinishing

With all the parts refinished and restored, the iron was sharpened and the plane reassembled and tuned for use. Naturally it doesn’t have the charm of a Sweetheart era, or even the character of a fine condition 1950s vintage, but this plane was saved from the landfill and with proper care, can easily shave wood another 70+ years.

SB4-T19 Rest16

SB4-T19 Rest17

***

Tool Profile – Stanley nos. 61 & 63 Low Angle Block Planes

Stanley nos. 61 & 63 ~ from the Virginia Toolworks collection

Stanley nos. 61 & 63 ~ from the Virginia Toolworks collection

The Stanley no. 61 and no. 63 planes are low angle block planes featuring depth adjustment mechanisms but lacking an adjustable throat plate.  Introduced in 1914 and 1911 respectively, neither the 6 inch no. 61 nor the 7 inch no. 63, were ever particularly popular with tradesmen, woodworkers, or carpenters.  Offered as less expensive, fixed throat alternatives to the no. 60 and no. 65, very few folks were tempted to purchase a low angle plane without an adjustable throat, especially when that feature could be had for just a few pennies more. Subsequently, their limited popularity constricted demand and production, and so they are fairly hard to find today.

Ironically, these planes are virtually identical to the very first type no. 60 and no. 65, both of which were introduced in 1898 with a similar wooden knob and lacking an adjustable throat.  Why then, less than 10 years later, Stanley thought reintroducing this handicapped design under the model nos. 61 and 63 was a good idea is anyone’s guess. Regardless, both the no. 61 and no. 63 are easily distinguished from the Type 1 no. 60 and 65 since their model numbers were cast in relief at the rear of the bed just below the depth adjustment knob.  Manufactured for less than 25 years, both planes were discontinued in 1935.

While the no. 61 and no. 63 are very collectible due to their scarcity, users looking for a functional low angle block are far better off sourcing a no. 60 or 65 in good condition.

***

%d bloggers like this: